调和分数 Ornstein-Uhlenbeck 金融模型的参数估计
摘要:
为了描述金融资产价格过程的长相依性和自相似性,首先构建由调和分数布朗运动驱动的分数 Ornstein-Uhlenbeck(O-U)模型。由于调和分数布朗运动是分数布朗运动的推广,故所构建的模型具有更广泛的应用。然后基于离散观测样本,利用最小二乘方法,得到模型漂移参数的估计量,并证明了估计量的相合性和渐近分布。最后,通过模拟展示了所得估计量的有限样本性质,模拟结果显示估计量的值拟合参数真值的效果较好。
In order to deseribe the long-range dependence and selfsimilarity of financial asset price process, this paper first constructs a fractional Omstein-Uhlenbeck (O-U) model driven by tempered fractional Brownian motion. Because tempered fractional Brownian motion is a generalization of fractional Brownian motion, the model constructed has more extensive applications, Based on diserete observation samples, the estimator for the model of the drift parameter is obtained by using the least square method, the consisteney of the estimator is proved, and the asymptotie distribution of the estimator is given, Finally, the simulation shows the finite sample property of the estimator, and the simulation results show that the estimator is effective.
作者:
王继霞,王琳,李浩然
Wang Jixia,Wang Lin, Li Haoran
机构地区:
Betway官方客服数学与信息科学学院;湖南大学经济管理研究中心
引用本文:
王继霞,王琳,李浩然。调和分数 Ornstein-Uhlenbeck金融模型的参数估计[J].Betway官方客服学报(自然科学版),2025,53(1):75-8 (Wang Jixia,Wang Lin,Li Haoran.Parameter estimation of tempered fractional Orn-stein-Uhlenbeck financial model[J].Journal of Henan Normal University(Natural Science Edition),2025,53(1):75-81.DOI:10.16366/j.cnki.1000-2367.2023.03.10.0006.)
基金:
国家自然科学基金;河南省软科学研究计划项目
关键词:
最小二乘估计;调和分数布朗运动;Ornstein-Uhlenbeck过程;相合性;渐近分布
least squares estimation; tempered fractional Brownian motion; Ornstein-Uhenbeck process; consisteney;asymptotie distribution
分类号:
O211.6;F830.9
调和分数 Ornstein-Uhlenbeck 金融模型的参数估计.pdf