切换线性系统在一类切换策略下的鲁棒稳定性分析
摘要:
针对一类子系统都不稳定的切换线性系统在一类混合切换法则下的鲁棒稳定性进行了研究.在适当的假设下,基于驻留时间和状态混合驱动的切换法则,系统的Lyapunov函数在切换时刻的衰减量可消除系统在驻留时间驱动下的增加量,从而使系统趋于稳定.另外,在适当的假设条件下,受扰的切换线性系统在一个改进的切换信号下具有良好的鲁棒稳定性.最后,一个数例仿真验证了切换设计的有效性.
In this paper,the robust stability of a switched linear system with unstable subsystems is investigated under a class of combined switching strategies.Under the dwell-time driven and state driven combined switching laws,the Lyapunov function is attenuated at the switching instant.With proper assumptions,the attenuation can eliminate the increased amount during the dwell-time driven loop,which leads to the exponential stability.Furthermore,under proper conditions,the perturbed switched linear systems have good robust stability with a modified switching law.At the end,a numerical example verified the effectiveness of the switching designs.
作者:
熊建栋 任志敏
Xiong Jiandong;Ren Zhimin(School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China)
机构地区:
Betway官方客服数学与信息科学学院
出处:
《Betway官方客服学报:自然科学版》 CAS 北大核心 2018年第1期29-36,共8页
基金:
国家自然科学基金(61603093) 河南省科技攻关计划项目(062102210265) Betway官方客服博士启动项目(qd13038)
关键词:
切换线性系统 驻留时间 最小切换 镇定性 鲁棒性
switched linear system dwell-time min-switching stabilization robustness
分类号:
O231.1 [理学—运筹学与控制论]