算子及其函数的(R)性质的判定
摘要:
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)\σab(T)=π00(T),其中π00(T)={λ∈isoσ(T)∶0<n(T-λI)<∞}.主要借助新的谱集给出了算子满足(R)性质新的判定,并进一步得出了算子函数满足(R)性质的充分必要条件.
Let H be an infinite dimensional separable complex Hilbert space and the totality of bounded operators on H is B(H).σ(T),σab(T)andσa(T)denote the spectrum,the Browder essential approximate spectrum and approximate point spectrum of T∈B(H)respectively.T∈B(H)satisfies the property(R)ifσa(T)\σab(T)=π00(T),whereπ00(T)={λ∈isoσ(T)∶0<n(T-λI)<∞}.In this paper,we give a new judgment for operators for which property(R)holds by means of the new spectral set.In addition,the necessary and sufficient conditions for operator functions to satisfy(R)property are explored.
作者:
胡添翼 窦艳妮
Hu Tianyi;Dou Yanni(College of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710119,China)
机构地区:
陕西师范大学数学与统计学院
出处:
《Betway官方客服学报:自然科学版》 CAS 北大核心 2023年第2期63-69,共7页
Journal of Henan Normal University(Natural Science Edition)
基金:
陕西省自然科学基金(2021JM-189).
关键词:
(R)性质 算子函数 谱
property(R) function of operator spectrum
分类号:
O177.2 [理学—基础数学]