| ||||||
| ||||||
教育经历: 2002—2006 毕业于南阳师范学院,获得理学学士学位; 2006—2011 硕博连读于华南理工大学,获得理学博士学位。 工作经历: 2011.7— 2013.9, Betway官方客服数学与信息科学学院,讲师; 2013.10—2020.3, Betway官方客服数学与信息科学学院,副教授(其间:2016.09—2017.09, 国家公派访问学者,访问美国伊利诺伊理工大学应用数学系); 2020.4- 至今 , Betway官方客服数学与信息科学学院,教授 | ||||||
| ||||||
偏微分方程,调和分析,随机偏微分方程,初值随机化 | ||||||
| ||||||
主讲本科生课程:《线性代数 》、《高等数学》、《专业英语》、《数学物理方法》、《数学物理方程》、《常微分方程》 主讲研究生课程:《偏微分方程》、《调和分析》 | ||||||
| ||||||
2014年, 荣获2012-2014年度Betway官方客服优秀教师称号 2014年, 荣获Betway官方客服2014年度校骨干教师称号 2016年, 荣获Betway官方客服优秀实习指导教师称号 2019年, 荣获Betway官方客服2017-2018年度文明教师称号 2020年, 荣获Betway官方客服优秀共产党员 | ||||||
| ||||||
1.国家自然科学基金, Camassa-Holm型方程解的整体存在性和爆破性研究,2013.01-2013.12,主持 2.国家自然科学基金, 水波中某些非线性色散方程的适定性研究,2015.01-2017.12, 主持 3.国家自然科学基金, KP型方程和Ostrovsky型方程低正则性解的研究,2018.01-2021.12,主持 4.国家留学基金委项目, 色散波方程的初值随机化, 2016.09-2017.09,主持. 5.河南省骨干教师项目, 高阶薛定谔方程的柯西问题的研究,2018.1-2020.12,主持 | ||||||
|
[1] Yan, Wei; Zhang, Qiaoqiao; Zhang, Haixia; Zhao, Lu The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation. J. Math. Anal. Appl. 489 (2020), no. 2,124198, 37 pp.
[2] Yan, Wei; Li, Yongsheng; Huang, Jianhua; Duan, Jinqiao The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces.Anal. Appl. (Singap.) 18 (2020), no. 3, 469-522.
[3] Yan, Wei; Yang, Meihua; Duan, Jinqiao White noise driven Ostrovsky equation. J. Differential Equations 267 (2019), no. 10, 5701-5735.
[4] Yan, Wei; Li, Yongsheng; Zhai, Xiaoping; Zhang, Yimin The Cauchy problem for higher-order modified Camassa-Holm equations on the circle. Nonlinear Anal. 187 (2019), 397–433.
[5] Yan, Wei; Zhang, Qiaoqiao; Zhao, Lu; Zhang, Haixia The local well-posedness and the weak rotation limit for the cubic Ostrovsky equation. Appl. Math. Lett. 96 (2019), 147-152.
[6] Fan, Lili; Yan, Wei The Cauchy problem for shallow water waves of large amplitude in Besov space. J. Differential Equations 267 (2019), no. 3, 1705-1730.
[7]Fan, Lili; Yan, Wei On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Anal. Real World Appl. 44 (2018), 223-245.
[8] Yan, Wei; Li, Yongsheng; Huang, Jianhua; Duan, Jinqiao The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differential Equations Appl. 25(2018), no. 3, Paper No. 22, 37 pp.
[9] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations. Anal. Appl. (Singap.) 16(2018), no. 3, 363-405.
[10] Wang, JunFang; Yan, Wei The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal. Real World Appl. 43 (2018), 283–307.
[11] Ren, Yuanyuan; Li, Yongsheng; Yan, Wei Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 17(2018), no. 2, 487-504.
[12] Jiang, Minjie; Yan, Wei; Zhang, Yimin Sharp well-posedness of the Cauchy problem for the higher-order dispersive equation. Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 4,1061-1082.
[13] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global solution to the 3-D density-dependent incompressible flow of liquid crystals. Nonlinear Anal. 156 (2017), 249-274.
[14] Yan, Wei; Li, Yongsheng; Zhai, Xiaoping; Zhang, Yimin The Cauchy problem for the shallow water type equations in low regularity spaces on the circle. Adv. Differential Equations 22 (2017), no. 5-6, 363-402.
[15]Ma, Haitao; Zhai, Xiaoping; Yan, Wei; Li, Yongsheng Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces. Z. Angew. Math. Phys. 68 (2017), no. 1, Paper No. 14, 37 pp.
[16]Li, Shiming; Li, Yongsheng; Yan, Wei A global existence and blow-up threshold for Davey-Stewartson equations in R3. Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 6,1899-1912.
[17]Lin, Lin; Lv, Guangying; Yan, Wei Well-posedness and limit behaviors for a stochastic higher order modified Camassa-Holm equation. Stoch. Dyn. 16 (2016), no. 6, 1650019, 19 pp.
[18] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl. Math. 143(2016), 1-13.
[19]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global solutions to the Navier-Stokes-Landau-Lifshitz system. Math. Nachr. 289 (2016), no. 2-3, 377-388.
[20]Li, Shiming; Yan, Wei; Li, Yongsheng; Huang, Jianhua The Cauchy problem for a higher order shallow water type equation on the circle. J. Differential Equations 259 (2015), no. 9, 4863-4896.
[21]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J. Math. Anal. Appl. 432(2015), no. 1, 179-195.
[22]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14 (2015), no. 5, 1865–1884.
[23]Chen, Defu; Li, Yongsheng; Yan, Wei On well-posedness of two-component Camassa-Holm system in the critical Besov space. Nonlinear Anal. 120 (2015), 285-298.
[24] Li, Yongsheng; Huang, Jianhua; Yan, Wei The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J. Differential Equations 259(2015), no. 4, 1379-1408.
[25]Zhao, Yongye; Li, Yongsheng; Yan, Wei The global weak solutions to the Cauchy problem of the generalized Novikov equation. Appl. Anal. 94 (2015), no. 7, 1334-1354.
[26] Yan, Wei; Li, Yongsheng The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space. Ann. Inst. H. Poincaré Anal. Non Linéaire32 (2015), no. 2, 443-469.
[27] Chen, Defu; Li, Yongsheng; Yan, Wei On the Cauchy problem for a generalized Camassa-Holm equation. Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 871-889.
[28] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation. Appl. Anal. 93 (2014), no. 7, 1358–1381.
[29] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation in Besov space. J. Differential Equations 256 (2014), no. 8,2876-2901.
[30]Zhao, Yongye; Li, Yongsheng; Yan, Wei Local well-posedness and persistence property for the generalized Novikov equation. Discrete Contin. Dyn. Syst. 34 (2014),no. 2, 803-820.
[31]Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the Novikov equation. NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1157-1169.
[32]Yan, Wei; Li, Yongsheng; Li, Shiming Sharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation. Differential Integral Equations 25(2012), no. 11-12, 1053–1074.
[33]Yan, Wei; Li, Yongsheng Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 710–716.
[34] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the integrable Novikov equation. J. Differential Equations 253 (2012), no. 1, 298-318.
[35]Yan, Wei; Li, Yongsheng; Zhang, Yimin Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75 (2012), no. 4, 2464-2473.
[36]Yan, Wei; Li, Yongsheng; Yang, Xingyu The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math. Comput. Modelling 54 (2011), no. 5-6, 1252-1261.
[37] Yan, Wei; Li, Yongsheng Ill-posedness of Kawahara equation and Kaup-Kupershmidt equation. J. Math. Anal. Appl. 380 (2011), no. 2, 486-492.
[38]Yan, Wei; Li, Yongsheng The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 33 (2010), no. 14, 1647-1660.
[39]Li, Yongsheng; Yan, Wei; Yang, Xingyu Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. J. Evol. Equ. 10 (2010), no. 2, 465-486.