文章编号:1000-2367(2021)04-0047-06

Mo 掺杂 In₂O₃ 电子结构和光学性质的第一性原理计算

杨卫霞,林雪玲,张贺翔,潘凤春,安媛新

(宁夏大学物理与电子电气工程学院,银川 750021)

摘 要:运用基于密度泛函理论(Density Functional Theory, DFT)第一性原理计算方法,研究了 Mo 掺杂 In₂O₃ 半导体的电子结构和光学性质.研究结果表明:Mo 属于 n 型掺杂,引入的杂质能级使掺杂体系的有效禁带宽 度变窄,掺杂体系载流子浓度的提高有效地改善了 In₂O₃ 半导体的导电性;Mo₀(Mo 替代 O 缺陷)引入的杂质能级 可以作为电子从价带向导带跃迁的桥梁,使得掺杂体系光学吸收谱的吸收边发生了明显的红移,有效提升了 In₂O₃ 半导体材料在可见光区、红外光区和远红外光区对光子的吸收幅度,从掺杂体系的反射系数也可以得到同样的结 论;Mo 掺杂引入的杂质能级可以有效提升 In₂O₃ 半导体材料的介电性能,这有利于光生电子-空穴对的产生和分离, 从而提高了 In₂O₃ 半导体材料对光子的吸收和转化效率.总之,Mo 的掺杂可有效改善 In₂O₃ 半导体光学性能,进一 步拓展了 In₂O₃ 在红外光光电子器件领域的应用.

关键词:In2O3;Mo;电子结构;光学性质;第一性原理计算

中图分类号: O433

文献标志码:A

 In_2O_3 是一种多功能半导体氧化物材料,具有较宽的禁带宽度、较小的电阻率和较高的光催化活性,因而在光电领域、气敏、催化剂等方面有着广泛的应用^[1-2].掺杂高价阳离子或低价阴离子后的 In_2O_3 薄膜其光电性能得到显著提高,从而在微波器件、显示屏、激光器、太阳能电池等方面的开发和应用获得了广泛的研究和关注^[3-6]: In_2O_3 的光吸收范围随 Fe 掺杂含量的增加逐渐向可见光方向移动,提高了 In_2O_3 的光催化性能;理论研究预测掺杂 Y 可以使 In_2O_3 的光学带隙蓝移^[7];F 和 Eu 掺杂 In_2O_3 薄膜的光谱呈现出多个发射峰,4%Eu³⁺掺杂时发光强度最大^[8-9];Sn 掺杂可以显著改善 In_2O_3 半导体在可见光范围内的透明度,ITO 薄膜对可见光的透射率可达 95%以上,对红外线的反射率可达 80%以上^[10-12];并入氢的 In_2O_3 薄膜在可见光和近红外波段表现出比传统薄膜更大的迁移率和更高的透明度^[13].由于 Mo 原子可以比 In 原子贡献更多的电子来增加载流子浓度,同样得到了研究者的关注.研究发现当 Mo 的掺杂比例达到 3%时,可见光透射率提高到 90%^[14-15].Mo 掺杂的氧化铟(IMO)非晶态透明导电氧化物薄膜具有良好的电学和光学性能^[16],所观察到的特性可能作为一种蓝色光源在电光器件中具有潜在的应用价值^[17].虽然实验上得到的 IMO 薄膜表明 Mo 的掺杂可以改善 In_2O_3 的光学性质,但在能带结构理论的解释方面较少.本文采用第一性原理计算的方法研究了 Mo 掺杂 In_2O_3 的电子结构和光学性质.

1 研究方法和模型的构建

采用基于密度泛函理论的 CASTEP 软件^[18]进行计算研究,电子体系用平面波波函数展开,并对系统总能量和电子密度在布里渊区进行积分,交换关联泛函采用局域密度近似能量泛函(Local Density Approximation,LDA).计算中 K 空间网格点的选取采用 Monkhorst-Pack 方案^[19-20],基态能量采用 Pulay 密度混合

收稿日期:2020-08-01;修回日期:2020-11-17.

基金项目:国家自然科学基金(11764032)

作者简介:杨卫霞(1995-),女,宁夏银川人,宁夏大学硕士研究生,研究方向为半导体的光学、磁学性质,E-mail:nxuywx @163.com.

通信作者:林雪玲(1982-),女,山东临沂人,宁夏大学副教授,博士,研究方向为半导体的光学、磁学性质,E-mail: nxulxl@163.com.

法^[21]计算,平面波截断能设为 420 eV,平均每个原子自洽精度为 2×10⁻⁶ eV.

选取了立方铁锰矿结构的 In₂O₃,该 结构属于 IA3 点群,一个晶胞包含 80 个 原子,即 16 个 In₂O₃ 分子,如图 1 所示. 其中 In 原子在晶格中有两个不等价的 坐标位,原子数比例为 1:3,分别标识为 "b"位和"d"位,48 个 O 原子的坐标位标 识为"e"位.图 1 中标识字母"b"的大球代 表"b"位 In 原子,其余大球为"d"位 In 原子,黄色小球表示"e"位 O 原子.

Mo 掺杂的 In₂O₃ 体系主要有以下 5 种缺陷类型:用一个 Mo 替代其中的一 个"b"位 In 原子,构成 Mo_{In} - b 替位缺 陷;同样的方法构成 Mo_{In} - d 替位缺陷 和 Mo₀ 替位缺陷;Mo 原子进入被 6 个 "d"位 In 原子包围的八面体空位时,形

大球代表In原子,小球代表O原子. 图1 In₂O₃超晶胞结构 Fig. 1 Structure of In₂O₃ supercell

成 Mo_i-Oh 间隙缺陷; Mo 原子进入被一个"b"位和 3个"d"位 In 原子包围的四面体空位时, 形成 Mo_i-Th 间隙缺陷.为了研究这 5种缺陷构型的稳定性, 对不同缺陷类型的形成能进行了计算, 计算公式如下

$$E_{\rm f} = E_{\rm tot}({\rm defect}) - E_{\rm tot}({\rm perfect}) \pm \sum \mu_i, \qquad (1)$$

式中 $E_{\rm f}$ 表示形成能, $E_{\rm tot}$ (defect)表示掺杂体系的总能量, $E_{\rm tot}$ (perfect)表示未掺杂 $\ln_2 O_3$ 体系的总能量, μ_i 分别表示 In 原子、O 原子和 Mo 原子的化学势,增加一个原子为"一",减少一个原子为"+".计算结果表明, Mo_{In}-b和 Mo_{In}-d缺陷的形成能分别为 0.16 eV 和 0.07 eV,Mo₀ 缺陷的形成能为 1.95 eV,Mo_i-Oh和 Mo_i-Th两种缺陷的形成能分别为 3.59 eV 和 3.37 eV.可以看出 Mo 掺杂的 In₂O₃体系中,Mo_{in}-b和 Mo_{In}-d缺陷的形成能较低,结构较为稳定.此外,Mo₀ 缺陷相比 Mo_i-Oh和 Mo_i-Th两种缺陷在形成能上也更具有优势,因此主要考虑了 Mo_{In}-d和 Mo₀ 两种缺陷类型对 In₂O₃体系电子结构和光学性质的影响.Mo_{In}-d(后文中用 Mo_{In}表示)缺陷是用一个 Mo 原子替代图 1 中的"1"号 In 原子构成,此时 Mo 掺杂比例为 3.125%.Mo₀ 缺陷是用一个 Mo 原子替代图 1 中"2"号 O 原子形成,此时 Mo 掺杂比例为 2.083%.

In₂O₃ 属于强关联电子体系半导体材料,需要考虑 In-4*d* 电子和 O-2*p* 电子的库仑能,采用文献[22] 的计算结果,对 In-4*d* 电子和 O-2*p* 电子的库仑位能修正为 U_{In-4d} =3 eV 和 U_{O-2p} =5 eV^[22],以保证计算 可以同时满足晶格常数和禁带宽度要求.利用以上数据计算得晶格常数为 *a*=*b*=*c*=1.020 3 nm,禁带宽度 为 *E*_g=2.573 eV,同实验值符合得较好.此外,Mo 为过渡族元素,其 4*d* 电子有较强的库仑相互作用,对 Mo 原子的库仑能修正为 U_{Mo-4d} =2 eV^[23].

2 计算结果与分析

2.1 电子结构

In₂O₃为直接带隙半导体,计算得到的带隙宽度为 2.573 eV,与实验值(2.619 eV)符合较好.Mo_{In}掺杂体系的带隙宽度为 0.592 eV.这是由于 Mo 掺杂在禁带中引入的杂质能级降低了 In₂O₃ 半导体的有效禁带宽度.这有利于提高材料的导电性能.Mo₀ 掺杂体系的禁带宽度很小,其数值仅为 0.092 eV,原因是 Mo 原子引入的杂质能级跨过费米能级,且杂质能级在禁带中是连续分布的.

从图 2(a)可以看出,费米能级位于价带顶,与导带底之间的能量间隙为 2.573 eV,其数值为本征 In₂O₃的禁带宽度.从图 2(b)和图 2(c)比较可以看出,未掺杂体系在-12 eV 处的态密度峰,主要由 In-4d 电子所 贡献,在-15 eV 处的态密度峰则由 In-4d 电子和 O-2s 电子共同贡献.在-6~0 eV 范围有一个较宽的态密度峰,此为价带顶的主要组成部分,由图 2 可看出价带顶主要由 In-5s,In-5p,In-4d 和 O-2p 电子组

300

(a)

成,O-2s 电子对价带顶的贡献较小,未掺杂体 系的导带底则主要由 In-5s, In-5p 和 O-2p电子共同组成.

图 3(a)给出了包含一个 Moun 掺杂体系中 Mo原子 PDOS 图.可以看出,在2 eV 左右有一 个较高的态密度峰,这是未掺杂体系中没有的, 归因于 Mo 掺杂所引入的杂质能级 同时在费米 能级处出现了一个由 Mo-4d 电子构成的态密 度峰,导致 Mon 体系价带向低能方向移动.图 3 (b)给出了包含一个 Moo 掺杂体系中 Mo 原子 PDOS 图.从图 3(b)可以看出, Mo 引入的杂质 能级跨过零点费米能级,且在费米能级处的数 值不为零,即杂质能级连续分布在禁带中,导致 Moo 体系有效禁带宽度极小.与未掺杂 In₂O₃ 半 导体相比较, Mo 掺杂的 In₂O₃ 体系禁带宽度变 窄从而提高了材料的导电性能,这对于 In₂O₃ 半 导体材料的改性是有利的.

2.2 3种结构体系的光学性质

2.2.1 介电函数

固体的能带结构和各种光谱信息可以通过 介电函数来表征,半导体中电子在能带之间的 跃迁反映了固体的能态密度与介电函数之间的 关系.因此,半导体在线性响应范围内的光学性 质通常用复介电函数 $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$ 来 描述,其中 $\epsilon_2(\omega)$ 表示介电函数的虚部,由价电 子在占据轨道和非占据轨道之间的跃迁来计算 得到. $\varepsilon_1(\omega)$ 为介电函数的实部,通过虚部 $\varepsilon_2(\omega)$ 所满足的 Kramers-Kronig 色散关系得到^[24],方 程如下

$$\varepsilon_1(\omega) = 1 + \frac{2}{\pi} p \int_0^\infty \frac{s \varepsilon_2(s)}{s^2 - \omega^2} \mathrm{d}s, \qquad (2)$$

$$\varepsilon_{2}(\omega) = -\frac{2\omega}{\pi} p \int_{0}^{\infty} \frac{\varepsilon_{1}(s)}{s^{2} - \omega^{2}} \mathrm{d}s, \qquad (3)$$

其中 p 为积分

$$p\int_{0}^{\infty} \equiv \lim_{\delta \to 0} \left(\int_{0}^{\omega - \delta} + \int_{\omega + \delta}^{\infty} \right).$$
 (4)

DOS/(states•eV⁻¹) - TDOS 200 100 0 (b) PDOS/(states•eV⁻¹) In-s In−p 8.0 In-d 0.8 0.6 0.4 0.2 AM 0.0 (c) 0-5 1.2 ^{pDOS}/(states•eV⁻¹) 0-p 0.8 0.4 0.0 -20-15-10-5 0 5 E/eV(a) Total DOS: (b) In-PDOS: (c) O-PDOS. 图2 未掺杂In_O。的态密度图 Fig.2 DOS of undoped In_2O_3 system (a) Mo-s 4 PDOS/(states•eV⁻¹) Mo-p 3 Mo-d 2 0

-5

E/eV

0

图 4 给出了 3 种结构体系介电函数实部(实线表示)与虚部(虚线表示)随入射光子能量的变化关系,从 图 4(a)中可以看出未掺杂体系的静介电函数(光子能量为 0 时)实部数值为 1.7, 而虚部在光子能量为2.7 eV 时才有数值.说明 In₂O₃ 半导体中的电子从价带顶到导带底的跃迁需要吸收较大的光子能量才可以实现.图 4(b)和图 4(c)分别给出了 Mon 和 Moo 两种掺杂体系的复介电函数.两种掺杂体系的静介电函数的实部数 值分别为 2.5 和 3.8,远大于未掺杂体系的 1.7.说明 Mo 掺杂的 In₂O₂体系具有很强的介电性,体系内部极化 能力增强.这有利于光生电子-空穴对的迁移和分离.此外,两种掺杂体系的虚部在入射光子能量为零时就具 有一定数值.原因在于 Mo 掺杂引入的杂质能级降低了 In₂O₃ 半导体有效禁带宽度,电子由价带顶向导带底 跃迁的概率增大,杂质能级跨过费米能级,电子在杂质能级内跃迁时几乎不需要吸收光子的能量即可实现.

(b)

-15

-10

4

3

PDOS/(states•eV⁻¹)

10

Mo-s

Mo-p

Mo-d

5

10

49

$$= 1 + \frac{\pi}{\pi} p \int_{0}^{\infty} \frac{s^{2} - \omega^{2}}{s^{2} - \omega^{2}} ds, \qquad (2)$$

$$= -\frac{2\omega}{\pi} p \int_{0}^{\infty} \frac{\varepsilon_{1}(s)}{s^{2} - \omega^{2}} ds, \qquad (3)$$

$$\text{bh \equiv fig., \equiv Let \sigma ds}, \qquad (4)$$

同时, Mo_{In}和 Mo_O 两种掺杂体系的虚部相比未掺杂体系多出来一个介电峰, 此介电峰的出现有利于价电子的激发跃迁, 从而大大提升了掺杂体系对入射光子的吸收效率. 另外, Mo_{In}和 Mo_O 两种掺杂体系的虚部在红外光区的数值大于未掺杂体系, 表明 Mo 的引入可以增强 In₂O₃ 体系对红外光区光子的吸收能力.

2.2.2 光学吸收谱

由图 5 可知未掺杂 In₂O₃ 半导体光学吸收谱 (黑色实线)的吸收边落在光子波长 415 nm 处,这 表明未掺杂的 In₂O₃ 体系对光子波长大于 415 nm 的光子没有吸收,这是因为未掺杂 In2O3 体系的禁 带宽度较大,电子从价带顶向导带底跃迁时需要吸 收能量较高的光子.图 5 中的蓝色虚线是 Mon 掺杂 体系的吸收光谱,可以看出 Mon 掺杂体系在光子 波长 360 nm 处出现了一个新的吸收峰,这表明 Mo_{In}缺陷的引入可以有效提升 In₂O₃ 体系对短波 光子的吸收幅度,然而该吸收幅度在光子波长为 680 nm 时迅速降为零.这表明 Mon 缺陷的引入对 可见光的吸收幅度基本没有提升:从波长 680 nm 处开始,Moin 掺杂体系对光子的吸收幅度有所提 升,在波长1600 nm 处达到一个新的吸收峰,并且 其吸收边落在了远红外光区,体系的吸收谱发生了 红移.红移原因在于掺杂体系中电子吸收很少的能 量即可发生价带、杂质能级和导带之间的跃迁.图 5 中的红色虚线是 Moo 掺杂体系的吸收谱线.可以

看出 Moo 掺杂体系在光子波长 300 nm 处快速提升,在光子波长 520 nm 处达到最大后缓慢降低,Moo 掺杂体系的光学吸收谱的吸收边同样落在了远红外光区;相比于未掺杂 In₂O₃ 体系和 Mo_{1n}体系,Moo 缺陷的引入可以提升掺杂体系对可见光区光子的吸收幅度,但在光子波长 1 260 nm 以后的红外光区和远红外光区吸收幅度不如 Mo_{1n}掺杂体系.

3 种体系的光学吸收谱在光子波长 230 nm 处均有一个峰值很大的吸收峰:对未掺杂 In₂O₃ 体系,此吸 收峰对应电子从价带顶到导带底的跃迁;两种掺杂体系在此位置的吸收峰因电子从价带顶到费米能级附近 的杂质能级跃迁所致.Mo_{1n}缺陷的引入导致掺杂体系的价带顶移动到-2.48 eV 处,同时导带底下移到零点 费米能级处的杂质能级所在位置,而 Mo₀ 缺陷的引入导致价带移动到-3.49 eV 处,杂质能级位于 -1.11 eV处,因此未掺杂 In₂O₃ 体系中电子从价带顶到导带底跃迁和掺杂体系电子从价带顶向杂质能级跃 迁所吸收光子的能量相当,因此 3 种体系的光学吸收谱在光子波长 230 nm 处均有一个较大吸收峰.

综上所述, Mo 的引入可以使 In₂O₃ 的光学吸收边发生红移, 掺杂体系对红外光区和远红外光区光子的 吸收能力显著提高, 表明 Mo 的掺入有利于 In₂O₃ 半导体光学性能的改善, 可有效扩展 In₂O₃ 半导体材料在 光学领域的应用.

2.2.3 反射光谱

图 6 给出了 3 种结构体系的反射光谱.未掺杂体系(黑色实线)反射系数最大峰与其光学吸收谱(图 5 中 黑色实线)最大峰相对应.图 6 中的蓝色虚线为 Mo_{In}体系的反射光谱,可以看出在光子波长 0~1 000 nm 之 间有两个明显的反射峰,分别与光学吸收谱(图 5 中蓝色虚线)在 0~1 000 nm 之间的两个吸收峰相对应. Mo_{In}体系的反射系数在 1 000 nm 后突然增加,形成一个较大的反射峰,表明 Mo_{In}体系对红外光区、远红外 光区光子有很强的反射,这与其光学吸收谱在 1 000 nm 后的吸收峰相对应.图 6 中 Mo₀ 体系(红色虚线)的 反射光谱也与其吸收光谱(图 5 中红色虚线)有如此的对应,这表明吸收系数大的介质其反射系数也大^[25], 因此 Mo_{In}和 Mo₀ 两种体系在红外光区和远红外光区反射系数的增大,同样表明 Mo 的掺入可以有效提升 In₂O₃ 半导体对红外光区和远红外光区光子的吸收,这可以有效提高 In₂O₃ 半导体的光催化特性.

3 结 论

本文运用基于密度泛函理论的第一性原理方法研究了 Mo 掺杂 In₂O₃ 半导体的电子结构和光学性质, 得到的结论如下:1)Mo 掺杂属于 n 型掺杂,Mo 掺杂引入的杂质能级使得掺杂体系的有效禁带宽度变窄,其 中 Mo₀ 掺杂体系的禁带宽度几乎为零;2)Mo 的掺入使得掺杂体系的静介电常数有很大提升,提高了 In₂O₃ 半导体的介电性能,有利于光生电子-空穴对的产生和分离.掺杂体系在光子能量为 0 时对入射光子就有很 大响应,增强了 In₂O₃ 半导体材料对光子的吸收率,同时也大大提升了掺杂体系对远红外光区光子的吸收; 3)Mo 引入的杂质能级可以作为电子从价带向导带跃迁的桥梁,因此掺杂体系光学吸收谱的吸收边发生了 红移,有效提升了 In₂O₃ 半导体在可见光区、红外光区和远红外光区对光子的吸收幅度,从掺杂体系的反射 光谱可以得到相同的结论.Mo 的掺杂有利于改善 In₂O₃ 半导体的光学性能,拓展 In₂O₃ 半导体在光学领域 的应用.期望本研究能为实验上制备光学性能优良的 In₂O₃ 半导体材料提供一定的理论支撑.

- [1] ANAND K, KAUR J, SINGH R C, et al. Structural, optical and gas sensing properties of pure and Mn-doped In₂O₃ nanoparticles[J].Ceramics International, 2016, 42(9): 10957-10966.
- [2] 张富春,张志勇,张威虎,等.In₂O₃ 电子结构与光学性质的第一性原理计算[J].化学学报,2008,66(16):1863-1868. ZHANG F C,ZHANG Z Y,ZHANG W H,et al. The first-principle calculation of electronic structure and optical properties of In₂O₃[J]. Acta Chimica Sinica,2008,66(16):1863-1868.
- [3] LI R R,ZHAO J J,SI H Y,et al.Development of flexible thin film solar cells[J].J Chin Ceram Soc,2014,42(7):878-885.
- [4] KRISHNA N S, KALEEMULLA S, AMARENDRA G, et al. Structural, optical, and magnetic properties of Fe doped In₂O₃ powders[J]. Materials Research Bulletin, 2015, 61, 486-491.
- [5] CAO H M,XING P F,ZHOU W, et al. Indium vacancy induced d0 ferromagnetism in Li-doped In₂O₃ nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2018, 451:609-613.
- [6] 李大玉,张徐,沈明,等.Fe 掺杂对水热合成 In₂O₃ 结构与光催化性能的影响[J].西北师范大学学报(自然科学版),2019,55(5):57-64. LI D Y,ZHANG X,SHEN M, et al.Effect of Fe-doping on the microstructure and photocatalytic properties of In₂O₃ prepared by hydrothermal method[J].Journal of Northwest Normal University(Natural Science),2019,55(5):57-64.
- [7] 白丽娜.掺杂 ZnO和 In₂O₃ 电子结构和光学性质的第一性原理及实验研究[D].长春:吉林大学,2014.
 BA L N.Electrical structure and optical properties of doped ZnO and In₂O₃ by first-principles and experimental investigation[D].Chang-chun;Jilin University,2014.
- [8] HICHOU A E, ADDOU E, MANSORI M, et al. Structural, optical and luminescent characteristics of sprayed fluorine-doped In₂O₃ thin films for solar cells[J]. Solar Energy Materials & Solar Cells, 2009, 93:609-612.
- [9] 王晓玲.氧化钢基纳米纤维的制备及其光学性能研究[D].无锡:江南大学,2014. WANG X L.Preparation and optical properties of indium oxide compounds nanofibers[D].Wuxi:Jiangnan University,2014.
- [10] 马勇,孔春阳.ITO 薄膜的光学和电学性质及其应用[J].重庆大学学报(自然科学版),2002,25(8):114-117.
 MA Y,KONG C Y.Electrical and optical properties and applications of In₂O₃:Sn(ITO)films[J].Journal of Chongqing University(Natural Science Edition),2002,25(8):114-117.

- [11] 文世杰.单晶 In₂O₃ 及 In₂O₃ 掺杂 Sn 的光电性能的研究[J].无机材料学报,1993,8(2);227-233.
 WEN S J.The studies of electrical and optical properties of In₂O₃ and Sn-doped In₂O₃ single crystals[J].Journal of Inorganic Materials, 1993,8(2);227-233.
- [12] 胡阳,叶灵云,闫玉丽.Sn 掺杂对 In₂O₃ 热电性能的影响[J].原子与分子物理学报,2019,36(4):668-674.
- HU Y,YE L Y,YAN Y L.Thermoelectric properties of Sn doped In₂O₃[J].Journal of Atom and Molecular Physics,2019,36(4):668-674.
- [13] KOIDA T, FUJIWARA H, KONDO M. High-mobility hydrogen-doped In₂O₃ transparent conductive oxide for a-Si: H/c-Si heterojunction solar cells[J].Solar Energy Materials & Solar Cells, 2009, 93: 851-854.
- [14] KALEEMULLA N.MADHUSUDHANA R,GIRISH J, et al.Electrical and optical properties of In₂O₃: Mo thin films prepared at various Mo-doping levels[J].Journal of Alloys and Compounds.2010,504(2):351-356.
- [15] GUPTA R K, GHOSH K, MISHRA S R, et al. Structural, optical and electrical characterization of highly conducting Mo-doped In₂O₃ thin films[J]. Applied Surface Science, 2008, 254: 4018-4023.
- [16] WEI N M,XI F L,ZHANG Q,et al.Transparent conductive In₂O₃: Mo thin films prepared by reactive direct current magnetron sputtering at room temperature[J].Thin Solid Films,2006,500:70-73.
- [17] KALEEMULLA S, REDDY A S, UTHANNA S, et al. Effect of substrate temperature on the physical properties of In₂O₃: Mo films: Prepared by an activated reactive evaporation[J]. Vacuum, 2009, 83(6): 970-975.
- [18] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23):13244-13249.
- [19] PACK J D, MONKHORST H J. "Special points for Brillouin: zone integrations ":a reply[J]. Physical Review B, 1977, 16(4): 1748-1749.
- [20] MONKHORST H J.PACK J D.Special points for Brillouin:zone integrations[J].Physical Review B,1976,13(12):5188-5192.
- [21] ZHOU S Q, XU Q Y, POTZGER K, et al. Room temperature ferromagnetism in carbon-implanted ZnO[J]. Applied Physics Letters, 2008, 93:232507.
- [22] 林雪玲,潘凤春.钢锡氧化物电子结构和光学性质的第一性原理研究[J].山东师范大学学报(自然科学版),2016,31(3):64-70. LIN X L,PAN F C.The electronic structure and optical properties of indium tin oxide: the first-principles calculation study[J].Journal of Shandong Normal University(Nature Science),2016,31(3):64-70.
- [23] LIN X L, YANG W X, PAN F C. The first-principles calculation study on the magnetic properties of Mo doped GaSb[J]. Physica B: Condensed Matter, 2020, 596; 412399.
- [24] HUANG K.Solid State Physics[M].Beijing: Higher Education Press, 1988:437-452.
- [25] 潘凤春,林雪玲,曹志杰,等.Fe、Co、Ni 掺杂 GaSb 的电子结构和光学性质[J].物理学报,2019,68(18):184202.

PAN F C,LIN X L,CAO Z J,et al.Electronic structure and optical properties of Fe,Co,and Ni doped GaSb[J].Acta Phys Sin,2019, 68(18):184202.

Electronic structures and optical properties of Mo doped In_2O_3 : the first-principles calculations

Yang Weixia, Lin Xueling, Zhang Hexiang, Pan Fengchun, An Yuanxin

(School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)

Abstract: The electronic structures and optical properties of Mo doped In_2O_3 are studied by the LDA+U method of the first-principles calculation. The results indicate that the n-type defects of Mo substituted $In(Mo_{In})$ and Mo substituted $O(Mo_0)$ can introduce impurity levels in systems. The band-gap of Mo doped In_2O_3 systems is reduced because of the introduced impurity levels. The conductivity of In_2O_3 system is effectively improved by the high carrier concentration. The impurity energy levels introduced by Mo can be served as a bridge for electron transition from valence band to conduction band. The absorption edge of the optical absorption spectrum of the doped system is red shift obviously, and the absorption ability of the doped system to photons in the visible, infrared and far-infrared regions is significantly improved thereby. The same conclusion can be obtained from the reflection coefficient of the doped system. The substitution defects introduced by Mo can improve the dielectric properties of In_2O_3 , which is conducive to the generation and separation of photo generated electron-hole pairs, and improve the photon absorption and conversion efficiency of In_2O_3 . Mo doped systems can improve the optical properties of In_2O_3 , and our results will extend the applications of In_2O_3 in the field of infrared optoelectronic devices.

Keywords: In₂O₃; Mo; electronic structure; optical property; the first-principle calculation

[责任编校 杨浦 刘洋]