读书报告 郑文佳 2016年08月13日 Available online at www.sciencedirect.com #### **ScienceDirect** www.nrjournal.com Original Research ## Oat β-glucan depresses SGLT1- and GLUT2mediated glucose transport in intestinal epithelial cells (IEC-6)[☆] Nazanin N. Abbasi^a, Peter P. Purslow^b, Susan M. Tosh^c, Marica Bakovic^{d,*} ^a Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1 ^b Departamento de Technología y Calidad de los Alimentos, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina ^c Food Research Centre, Agriculture and Agri-Food, Guelph, ON, Canada N1G 5C9 ^d Department Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1 #### Introduction Diabetes is characterized by chronic hyperglycemia. Controlling the intestinal absorption of glucose in the **brush-border membrane** of the gut Improve levels of glucose in the blood SGLT1 + GLUT2 Oat β -glucan delays absorption of glucose significantly reduces postprandial blood glucose levels #### Methods and materials - 1. Cell culture procedures IEC-6 - 2. $C_{2-NBDG} = 100 \, \mu M$; $C_{Oat \, \beta-glucan} = 8 \, mg/ml$ - a. $C_{glucose} = 5$; 8; 15; 25 mM - b. Time = 10; 30; 60 minutes - 3. $C_{glucose} = 25 \text{ mM}$ $$C_{\text{Oat }\beta\text{-glucan}} = 4 ; 6 ; 8 \text{ mg/ml}$$ Cell lysis buffer 1 ml; 10 min Sonication; 10 sec 12000 g; 4 °C; 10 min 3 aliquots; 200 µl 注: 构建标准曲线 ### 1. IEC-6 intestinal cells are responsive to glucose and oat β -glucan #### SGLT1 #### SGLT1 #### GLUT2 #### **GLUT2** # Table 2 – Data analysis for the effects of glucose on glucose transport in IEC-6 cells | | ANOVA ^a , P value | | | | |-----------------------|------------------------------|--------|--------|--| | | 2-NBDG | SGLT1 | GLUT2 | | | Control vs treatment | <.0001 | .0004 | <.0001 | | | [Glucose] | .0181 | <.0001 | <.0001 | | | Time | NS | .0003 | NS | | | Treatment * [glucose] | NS | NS | NS | | | Treatment * time | NS | NS | NS | | | [Glucose] * time | <.0001 | <.0001 | <.0001 | | ^a Three-way ANOVA showing a highly significant effect (P < .05) of glucose concentration and time of sampling on glucose uptake (2-NBDG) and glucose transporter (SGLT1 and GLUT2) expression. Values of P > .05 are taken as nonsignificant (NS). # 2. Oat β-glucan inhibits glucose absorption by modifying viscosity of the medium and transporter expression ## SGLT1 ## **GLUT2** 8 mg/ml β -glucan *** ** *** 2 Glut2 mRNA (fold change) ** 1.5 0.5 0 10 30 60 Time(min) ## Table 3 – Data analysis for the effects of oat β -glucan on glucose transport in IEC-6 cells | | ANOVA a, P value | | | | |------------------------|------------------|--------|--------|--| | | 2-NBDG | SGLT1 | GLUT2 | | | Treatment | .0003 | .0071 | .015 | | | [β-Glucan] | NS | <.0001 | <.0001 | | | Time | .0007 | <.0001 | <.0001 | | | Treatment * [β-glucan] | .0105 | .0475 | .007 | | | Treatment * time | .0002 | NS | .015 | | | [β-Glucan] * time | .0497 | <.0001 | <.0001 | | ^a Three-way ANOVA showing that oat β-glucan concentration (viscosity of the medium) and time of sampling had highly significant effects (P < .05) on glucose uptake and glucose transporter expression. Values of P > .05 are taken as nonsignificant (NS). This study affirmed oat β -glucan as a dietary agent for minimizing postprandial glucose and showed that modulating the activity of the key intestinal glucose transporters with oat β -glucan could be an effective way of lowering blood glucose levels in patients with diabetes. PMCID: PMC4210911 Nutrients. 2014 Oct; 6(10): 4165-4177. Published online 2014 Oct 13. doi: 10.3390/nu6104165 ### The Role of Sodium-Dependent Glucose Transporter 1 and Glucose Transporter 2 in the Absorption of Cyanidin-3-O-β-Glucoside in Caco-2 Cells Tang-Bin Zou, 1,2 Dan Feng, 2 Gang Song, 1 Hua-Wen Li, 1 Huan-Wen Tang, 1 and Wen-Hua Ling 2,* Author information ▶ Article notes ▶ Copyright and License information ▶ This study examined the absorption mechanism of Cy-3-G in the small intestine, with respect to the role of the glucose carrier SGLT1 and GLUT2 in the transportation of cyanidin glycosides across the intestinal brush border membrane using a Caco-2 cell model. A better understanding of the mechanisms of anthocyanin absorption would be helpful in optimizing the application of nutrients in oxidative-induced diseases. To knockdown SGLT1 and GLUT2 expression, we performed transfection of human SGLT1 and GLUT2 small interfering RNA (sc-61538, sc-35495) with Caco-2 cells on Day 18 after differentiation, respectively. One-point-eight microliters of transfection reagents were added to 2.0 mL of DMEM serum-free medium containing 2 nmol/L of each siRNA oligo, incubated for 20 min and then added to the 12-well Transwell containing 1.0 mL fresh medium. A nonrelated, scrambled siRNA (sc-37007) was used as a control. Transfection reagent and all siRNA oligos were designed and synthesized by Santa Cruz. Twenty four, 48 and 72 h post-transfection, western blotting and real-time PCR were used to measure intracellular SGLT1 and GLUT2 levels. ## 1. Transport of Cy-3-G in Caco-2 Cell Monolayer **Table 1.** Transport parameters of Cy-3-G across Caco-2 cell monolayer (n = 6). | Cy-3-G (µmol/L) | P _{app} (×10 ⁻⁷ cm/s) | | Effice Detic | Tuesday DECaiones (0/) | |-----------------|---|-------------------|--------------|--------------------------| | | $\mathbf{B} \to \mathbf{A}$ | $A \rightarrow B$ | Efflux Ratio | Transport Efficiency (%) | | 10 | 10.57 ± 1.12 | 14.96 ± 1.88 | 0.71 | 2.41 | | 20 | 6.45 ± 0.46 | 8.98 ± 1.12 | 0.72 | 1.45 | | 40 | 3.58 ± 0.37 | 4.75 ± 0.51 | 0.75 | 0.76 | | 1 1 1 | | | | | Figure 1. Transport of Cy-3-G in Caco-2 cells; samples were collected from 30 to 120 min. #### 2. Absorption of Cy-3-G in the Presence of either Phloridzin or Phloretin **Figure 2.** Effects of phloridzin and phloretin on Cy-3-G absorption. The cell monolayer was treated with phloridzin (**A**) or phloretin (**B**) for 0.5 h before the assays were carried out. Values without a common letter differ, p < 0.05. **Figure 5.** Absorption of Cy-3-G in Caco-2 cells after siRNA transfection. After transfection for 48 h, Cy-3-G absorption was measured. Values without a common letter differ, p < 0.05. These findings suggest that Cy-3-G absorption is dependent on the activities of SGLT1 and GLUT2 in the small intestine and that SGLT1 and GLUT2 could be a limiting step for the bioavailability of Cy-3-G. SANTA CRUZ BIOTECHNOLOGY, INC. #### SGLT-1 siRNA (h): sc-61538 The Power to Dunction #### BACKGROUND Glucose is the main source of energy for mammalian cells and its entry is mediated by various transporters. Seven facilitative (GLUT-1 to -7) and 2 concentrative glucose transporters (SGLT-1 and -2) are identified. The Na+/glucose cotransporter gene SGLT-1 encodes the primary carrier protein responsible for the uptake of the dietary sugars glucose and galactose from the intestinal lumen. The glycoprotein is localized in the brush border of the intestinal epithelium and contains 12 membrane spans. SGLT-1 uses the electrochemical gradient of two sodium ions to transport one glucose molecule. Both the sodium glucose co-transporters SGLT-1 and -2 are also expressed in kidneys. The mRNA of SGLTs increases steadily from the fetal period to maturity along with the increase in their functional activity, i.e., glucose uptake. The interaction between a nucleocytoplasmic protein and a regulatory uridine-rich sequence in the 3'-UTR is important for cAMP-mediated SGLT-1 message stabilization. Defects in SGLT-1 cause Glucose-Galactose Malabsorption (GGM), resulting in neonatal onset of diarrhea, which results in death unless sugars are removed from the diet. #### REFERENCES - Turk, E., Klisak, I., Bacallao, R., Sparkes, R.S. and Wright, E.M. 1993. Assignment of the human Na+/glucose cotransporter gene SGLT-1 to chromsome 22q13.1. Genomics 17: 752-754. - Martin, M.G., Turk, E., Lostao, M.P., Kerner, C. and Wright, E.M. 1996. Defects in Na⁺/glucose cotransporter (SGLT-1) trafficking and function #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### APPLICATIONS SGLT-1 siRNA (h) is recommended for the inhibition of SGLT-1 expression in human cells. #### SUPPORT REAGENTS For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. # THANKS