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Abstract

© Cancer cells consume large quantities of glucose and primarily use glycolysis for
ATP production, even in the presence of adequate oxygen. This metabolic
signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct

glucose to biosynthesis, supporting their rapid growth and proliferation.
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© However, both causes of the Warburg effect and its connection to biosynthesis
are not well understood. Here we show that the tumour suppressor pS3, the most
frequently mutated gene in human tumours, inhibits the pentose phosphate

pathway (PPP).
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© Through the PPP, pS3 suppresses glucose consumption, NADPH production and

biosynthesis. The pS3 protein binds to glucose-6-phosphate dehydrogenase

(G6PD), the L first and rate-limiting enzyme of the PPP, and prevents the

formation of the active dimer.
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© Tumour-associated pS3 mutants lack the G6PD-inhibitory activity. Therefore,
enhanced PPP glucose fl¢ ux due to p53 inactivation may increase glucose

consumption and direct glucose towards biosynthesis in tumour cells.
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© The tumour suppressor p53 invokes anti-proliferative processes, of which the

best understood include cell cycle arrest, DNA repair and apoptosis.
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© Recent studies indicated that pS3 also has a role in modulating metabolism

including glycolysis and oxidative phosphorylation.
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© However, the role of pS3 in regulating biosynthesis is less well understood.
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© The PPP is important for both glucose catabolism and biosynthesis. In an
oxidative phase, the PPP generates NADPH (nicotinamide adenine dinucleotide
phosphate, reduced), the principal intracellular reductant required for reductive
biosynthesis such as the synthesis of lipid, and ribose S-phosphate, an essential

precursor for biosynthesis of nucleotides.

© This is followed by a non-oxidative interconversion of ribose 5-phosphate to the

intermediates in the glycolytic pathways.

© Despite the vital role of the PPP in biosynthesis and its close link to glycolysis,

the regulation of the PPP in tumour cells remains unclear.
|




© To investigate whether p53 modulates the PPP, we compared the oxidative

PPP flux in isogenic p53*+ and p53--human colon cancer HCT116 cells. Cells
were cultured in medium containing [2-13C]glucose, and the glucose metabolites

were measured by nuclear magnetic resonance (NMR) spectroscopy.




g B pr P33 deficiency correlates with increases in PPP flux, glucose
consumption and lactate production
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These results indicate that pS3 deficiency increases glucose consumption mainly

through an enhanced PPP flux. ;




pS3 deficiency correlates with increases in PPP flux, glucose consumption and
lactate production
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Inhibition of G6PD in these cells increased, rather than decreased, lactate production,
regardless of p53 status.




pS3 regulates NADPH levels

The PPP plays a significant role in the production
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Figure 2 p53 regulates NADPH levels




P33 regulates NADPH levels
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NADPH is required for the biosynthesis of lipid
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The difference in lipid accumulation between p53*/* and p53 -
cells diminished on treatment with G6PD siRNA or DHEA.

The p53 - MEF cells showed enhanced lipid
levels, compared with p53*+* MEF cells, as
evaluated by Oil Red O staining.

The lack of p53 also resulted in higher levels
of lipid in HCT116 cells. .




We also evaluated the effect of pS3 on
p53+/+ p53- . . .
the formation of fat droplets in the liver.

- The liver of p53-/- mice had a larger
number of bigger fat droplets, compared
with the liver of p53*/* mice.

-
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Histological sections of liver tissue from pS3 -~ and p53*/* mice were
stained with haematoxylin and eosin. Arrows indicate fat droplets.




Together, these results indicate that p53 inhibits
NADPH production and lipid accumulation by lowering
the glucose flux through the PPP.




To investigate the mechanism by which p53 regulates

the PPP, we assayed the activity of G6PD, a key
regulatory point of the PPP.




The lack of p53 correlated with a strong elevation in G6PD activity in both MEF and

HCT116 cells.

Similarly, when p53 was knocked down in U20S cells with shRNA, G6PD activity

nearly doubled.
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The laCK of p53 was associated with NIGAIY elevated G6PD ACHIVILY.

Conversely, OUBFEXPression of wild-type p53 in the p53-deficient cell lines (H1299
and p53-- Mdm - MEF) caused a noticeable H8Créase in G6PD aCtivity.
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These results show that pS3 suppresses G6PD activity.
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To I'ule out the involvement of other pS3 target genes

in the inhibition of G6PD, we used an inhibitor of p53

transcriptional activity, pifithrin- a (PFT a ).




o)

G6PD enzyme activity

=

2 126

o T

2 100 i

&

2 80

[@)]

E 60

8

= 40

E 20

@

a

= 0

= P53 Wit A
PFla = = e

M. (K)
g 50 i |« p53

| —— —|+ G6PD

20-| =] < p21

37 _I — -—-|* Actin

1 2

3 4

PFT a impeded p53-induced expression of p21, but did
not restore p53-inhibited G6PD activity.
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Treatment of p53** HCT116 cells with
cycloheximide alone resulted in a lower
level of p53, which was accompanied by
a higher activity of G6PD.

Simultaneous treatment with
cycloheximide and doxorubicin led to a
stabilization of p53 above the basal level
in unstressed cells, and a concurrent drop
of G6PD activity below its basal level.

As controls, none of these treatments
altered G6PD activity in p53-/- HCT116
cells.




In addition, the p53 mutant VI22A, which hasa p
transactivation activity comparable to or even higher

than wild-type p53 dependent on the target gene = :g MEF (p53~", Mdm2™")
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Moreover, we treated cells with the nuclear export inhibitor
leptomycin B to prevent cytoplasmic accumulation of pS3. Leptomycin
B reversed pS3-mediated inhibition of G6PD.
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Together, these results show that inhibition of G6PD by

p33 is independent of transcription or translation and

is a cytoplasmic, not nuclear, function of p53.




We next investigated whether pS3 interacts with G6PD.




Flag-tagged p53 specifically associated with enhanced green fluorescent protein (eGFP)
G6PD in vivo. Similarly, endogenous p53 interacted with endogenous G6PD. This
interaction was enhanced when cells were treated with the proteasome inhibitor

MG132 doxorubicin, both of which stabilized p53.
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G6PD i1s a cytoplasmic protein, whereas p53 1s
present in both the cytoplasm and the nucleus, and
consistently, the p5S3 - G6PD interaction occurred in
the cytoplasm.
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